[AR] Re: Congratulations to USC for Traveler IV launch

  • From: Henry Vanderbilt <hvanderbilt@xxxxxxxxxxxxxx>
  • To: arocket@xxxxxxxxxxxxx, Shepherd Kruse <shepherd.h.kruse@xxxxxxxxx>
  • Date: Sun, 26 May 2019 11:37:07 -0700

For a student liquid-rocket propulsion project with a chance of successful completion in four years of your no-doubt plentiful undergrad spare time :-D
 I'd suggest starting with a fairly basic known-workable engine configuration, then aim not to perfect it, but to build then thoroughly test and characterize it.  Maybe, if things go amazingly well, to iterate a second-gen version with lessons-learned then thoroughly test and characterize that.

I'd go with LOX-alcohol as propellants.  Learn cryo handling with something cheap where the proper safe handling procedures and gear are also relatively cheap and accessible (and where you can do initial hardware safety & function testing with also-cheap and much-lower-hazard LN2).  Alcohol - isopropyl is cheap and relatively low-toxicity - meanwhile is less tricky than kero to get to burn and shut down reliably, and it also allows you to sneak up on full performance and full thermal stresses by diluting with water.

Thoroughly test and characterize...  Run the engine across a range of mix-ratios, propellant temperatures, ambient temperatures, and other operating conditions (humidity!) roughly representative of some interesting real-world operating scenario.  Collect good data - then organize it into usable form!  And, by the way, pick an engine design where you can fab a new copy fast & cheap so when you (inevitably if you're exploring the envelope) send metal vapor out the exhaust you can get back to testing quickly. (Ideally, have a spare or two in stock, so you can run again as soon as you're reasonably sure you know what happened and have a useful adjustment to test.)

You're almost certainly not going to advance the liquid biprop SOTA in this.  What you will do is learn a huge number of useful lessons in the real-world care and feeding of liquid biprops, plus develop and demonstrate some highly useful leadership and organizational skills.  And maybe, if you do a good enough job of documenting things, you can build a higher base for future students to start from.

And for a graduation exercise, early in your senior year pick out a few of the most promising younger types, and by the end of the year have at least one of them ready to step into your shoes, take over, maybe carry on with putting the by-then thoroughly understood engine into some sort of flying testbed and thoroughly characterizing /that/.

good luck!

Henry

On 5/25/2019 2:41 PM, Shepherd Kruse wrote:

I’m a student headed to the Air Force academy this Fall. I like the thought process of going directly to liquids and spending all the time and resources perfecting an engine. I’m hoping to get backed by the Astro department and getting the rocketry program up and running again. I’ve done a lot of work on my own, but as far as success goes, what would you advise for me to focus on potentially leading a USAFA rocketry team?

Regards,

Shepherd Kruse
On May 25, 2019, 1:04 PM -0600, D K <dougchar001@xxxxxxxxx>, wrote:
Having done student projects involving rocketry for the last 15 years or so, while none this big, this is a major accomplishment. Students come and go administrations come and go, risk tolerance of management varies, and interest at the institution can vary as well. To work this long this hard and build upon the knowledge to make it work is a major accomplishment in my opinion.

The caveat on student rocketry programs is one bad mistake, test, flight can often ruin the whole program. Forgiveness for my perspective is rare. Ending a multi-year program that affects multiple students is not worth certain risks, IMO. Why liquids are a completely different ballgame at University settings.

And the reality is in a university setting we're training students to go out and work in different industries, oftentimes not involving rocketry, especially in small programs such as mine. Ultimately the student is more important than the rocket not the other way around. The student is our real deliverable. Why I'm only now starting to consider hybrids but at a very small scale initially. And like the previous poster said you can do a whole lot involving rocketry systems with solids as the propellant.

Doug Knight

On Sat, May 25, 2019, 1:58 PM Henry Spencer <hspencer@xxxxxxxxxxxxx <mailto:hspencer@xxxxxxxxxxxxx>> wrote:

    On Sat, 25 May 2019, Bruno Berger SPL wrote:
    > Starting with a solid  motor (eg a commercial one) is IMHO not
    wrong. So
    > you get your experience with the airframe, avionics, telemetry,
    recovery
    > etc before you maybe switch to liquids. The chance is great
    that you
    > will never fly something if you start with the development of a
    liquid
    > engine first...

    The flip side of this, though, is projects that decide to fly
    first with
    solids and then switch to liquids, but die when they try to make that
    transition.

    Whether starting with solids makes sense depends on your goals. 
    For sure,
    getting something liquid working is a big hurdle.  But if you
    *must* jump
    that hurdle to achieve your goals, flying with solids first might
    not be
    the best use of effort.  For example, if your goal is a system
    that does
    DC-X-style powered landings, then learning how to do reliable
    parachute
    recovery (which is harder than it looks, especially given that almost
    every failure means building a new rocket) might be a costly
    distraction.

    Part of the problem is that there's a hidden mistake here, lurking in
    Bruno's own wording.  Quite likely it *is* a mistake to start with
    development of a liquid *engine*, if your goal requires
    development of a
    liquid *propulsion system*.  With solids, the engine pretty much
    is the
    whole propulsion system.  With liquids, not so -- not even
    close.  People
    seldom do post-mortems on failed projects, but I think a lot of
    them would
    show that the project died between "engine drawings complete" and
    "first
    successful firing", because getting the *rest* of the propulsion
    system
    working was planned to take a weekend, and after two 14-hour days
    they
    realized they were only getting started.

    People who want a liquid propulsion system should not start, as
    so many of
    them do, by trying to design their ideal liquid engine. Better to
    start
    with the simplest and crudest engine possible, with no intention
    that it
    will ever fly, to get experience with plumbing, fluid handling,
    controls,
    ignition, plumbing, data acquisition, test operations, plumbing,
    etc. :-),
    before you maybe switch to a more sophisticated engine design. 
    Not least,
    because that experience is going to change your ideas about what
    the more
    sophisticated engine should look like.

    > for student projects it's important that you see results soon
    to keep
    > them motivated.

    Agreed, and in fact I would omit "for student projects" -- seeing
    results
    soon is important for any volunteer effort, and it sure doesn't
    hurt for
    investor relations either.

    For low-budget projects with an inexperienced team and nervous
    sponsors,
    the dinospace dogma of all-up testing -- build and fly the
    complete final
    system the first time, and of course it will work -- is a snare and a
    delusion(*).  Think incremental development and testing instead.

    (* In fact, if you look at how the all-up concept developed -- most
    notably, its use for Project Apollo -- the people involved didn't
    believe
    for an instant that the first test was certain to succeed.  They
    tried for
    it, they hoped for it, and they were prepared to exploit it if it
    happened, but they were far from sure of it.  The "and of course
    it will
    work" part got added later, by the ignorant and overconfident. )

    Henry


Other related posts: